\relax \@writefile{toc}{\contentsline {chapter}{\numberline {1}Partial Differential Equations of First Order}{1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {1.1}Introduction}{1}} \newlabel{geneqn}{{1.1}{1}} \@writefile{toc}{\contentsline {section}{\numberline {1.2}Revision of Partial Differentiation}{2}} \@writefile{toc}{\contentsline {section}{\numberline {1.3}Verification of Solutions to PDEs}{3}} \newlabel{wave1}{{1.2}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces The solution, $u(x,t)$ as a function of $x$ at various values of $t$.}}{4}} \newlabel{figpde1}{{1.1}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces The solution, $u(x,t)$ as a function of $x$ at various values of $t$.}}{5}} \newlabel{figpde2}{{1.2}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces The left figure shows a surface plot and the right figure shows a contour plot. In the contourplot the lines are for a given value of $u$.}}{6}} \newlabel{figpde3}{{1.3}{6}} \@writefile{toc}{\contentsline {section}{\numberline {1.4}Method of Characteristics}{6}} \newlabel{wave2}{{1.3}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces The parametric representation of a curve in the $x-t$ plane. The solid curve starts at $r=0$, $t=0$ and $x=x_{0}$. Choosing another value of $x_{0}$ gives the dashed curve.}}{7}} \newlabel{figpde4}{{1.4}{7}} \newlabel{eq1.4}{{1.4}{7}} \newlabel{Eq1.5}{{1.5}{7}} \newlabel{Eq1.6}{{1.6}{7}} \newlabel{Eq1.7}{{1.7}{7}} \newlabel{Eq1.8}{{1.8}{7}} \newlabel{Eq1.9}{{1.9}{8}} \newlabel{Eq1.10}{{1.10}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.1}Initial-value Problems}{8}} \newlabel{Eq1.11a}{{1.11}{8}} \newlabel{Eq1.11b}{{1.12}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces In this case the wave speed is negative and the wave moves to the left.}}{10}} \newlabel{figpde5}{{1.5}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.2}Initial-boundary-value Problems}{10}} \newlabel{Eq1.12}{{1.13}{10}} \newlabel{Eq1.13}{{1.14}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces The characteristic, $x = ct$, splits the $x-t$ plane into two regions}}{11}} \newlabel{figpde6}{{1.6}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4.3}Method of Characteristics : Other Examples}{11}} \newlabel{Eq1.14}{{1.15}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces The characteristic, with $c < 0$, intersects both the $x$-axis and the $t$-axis.}}{12}} \newlabel{figpde7}{{1.7}{12}} \newlabel{Eq1.15}{{1.16}{13}} \newlabel{Eq1.16}{{1.17}{13}} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Partial Differential Equations of Second Order}{15}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {2.1}Definitions of Partial Differential Equations}{15}} \newlabel{1dwave}{{2.1}{15}} \newlabel{1dheat}{{2.2}{15}} \newlabel{Laplace}{{2.3}{15}} \newlabel{Poisson}{{2.4}{15}} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Modelling: Derivation of the wave equation}{17}} \newlabel{1}{{2.5}{17}} \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces The string at a typical time $t$.}}{18}} \newlabel{fig1}{{2.1}{18}} \newlabel{2}{{2.6}{18}} \@writefile{toc}{\contentsline {section}{\numberline {2.3}D'Alembert's solution of the Wave Equation}{18}} \newlabel{3}{{2.7}{19}} \newlabel{4}{{2.8}{20}} \newlabel{5}{{2.9}{20}} \newlabel{6}{{2.10}{20}} \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces }}{22}} \newlabel{fig2}{{2.2}{22}} \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces }}{22}} \newlabel{fig3}{{2.3}{22}} \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces The solution obtained in Example {19} is shown for $\delta = 2$ and $c = 1$ at various times.}}{23}} \newlabel{fig4}{{2.4}{23}} \@writefile{toc}{\contentsline {section}{\numberline {2.4}Separation of Variables}{23}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Fourier Series}{23}} \newlabel{Fouriersection}{{2.4.1}{23}} \newlabel{fourier}{{2.11}{24}} \newlabel{a0}{{2.12}{24}} \newlabel{an}{{2.13}{24}} \newlabel{bn}{{2.14}{24}} \@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces (a) A function defined on a interval $0 < x < L$, where $L=1$. (b) The even extension of the function onto the interval $-L < x < L$ is shown as a solid curve and the periodic extension of period $2L$ is shown as a dot-dash curve. (c) The odd extension of the function, solid curve, and the periodic extension of period $2L$, dot-dash curve.}}{25}} \newlabel{fig5}{{2.5}{25}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Half-Range Expansions}{25}} \newlabel{Fourierhalfrange}{{2.4.2}{25}} \newlabel{coshalfrange}{{2.15}{25}} \newlabel{sinhalfrange}{{2.16}{25}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}The Method of Separation of Variables}{26}} \newlabel{boundary}{{2.17}{26}} \newlabel{initialu}{{2.18}{26}} \newlabel{initialvel}{{2.19}{26}} \newlabel{separate}{{2.20}{26}} \newlabel{wave111}{{2.21}{26}} \newlabel{wave222}{{2.22}{26}} \newlabel{wave3}{{2.23}{27}} \newlabel{waveX}{{2.24}{27}} \newlabel{waveT}{{2.25}{27}} \@writefile{toc}{\contentsline {subsubsection}{$C=0$}{27}} \@writefile{toc}{\contentsline {subsubsection}{$C = p^{2}$}{27}} \newlabel{waveX1}{{2.26}{27}} \newlabel{waveT1}{{2.27}{27}} \newlabel{waveX2}{{2.28}{27}} \@writefile{toc}{\contentsline {subsubsection}{$C = - p^{2}$}{28}} \newlabel{waveX3}{{2.29}{28}} \newlabel{waveT3}{{2.30}{28}} \newlabel{waveX4}{{2.31}{28}} \newlabel{waveX5}{{2.32}{28}} \newlabel{pvalue}{{2.33}{28}} \newlabel{waveT4}{{2.34}{28}} \newlabel{wave4}{{2.35}{28}} \newlabel{wave5}{{2.36}{28}} \newlabel{wave6}{{2.37}{29}} \newlabel{wave7}{{2.38}{29}} \newlabel{wave8}{{2.39}{29}} \newlabel{coeffDm}{{2.40}{29}} \newlabel{coeffDn}{{2.41}{29}} \newlabel{wave9}{{2.42}{29}} \newlabel{wave10}{{2.43}{29}} \newlabel{wave11}{{2.44}{30}} \newlabel{triangle}{{2.45}{31}} \newlabel{triangle1}{{2.46}{32}} \@writefile{toc}{\contentsline {section}{\numberline {2.5}Modelling: Derivation of the heat equation}{34}} \newlabel{heateq}{{2.47}{34}} \@writefile{toc}{\contentsline {section}{\numberline {2.6}Solution of the heat equation: separation of variables}{35}} \newlabel{heateq1}{{2.48}{35}} \newlabel{heatbc}{{2.49}{35}} \newlabel{heatic}{{2.50}{35}} \newlabel{heatsep}{{2.51}{35}} \newlabel{heatsep1}{{2.52}{35}} \newlabel{heatsep2}{{2.53}{35}} \newlabel{sepconst}{{2.54}{35}} \newlabel{heatx}{{2.55}{35}} \newlabel{heatx1}{{2.56}{35}} \newlabel{sepconst1}{{2.57}{35}} \newlabel{heatsol}{{2.58}{35}} \newlabel{heatsolic}{{2.59}{36}} \newlabel{heatcoeffs}{{2.60}{36}} \newlabel{heatex1}{{2.61}{36}}