Next: 2D Cylindrical Polars
Up: NonCartesian Coordinates
Previous: NonCartesian Coordinates
Consider the position vector
Assume that both and are increased by small amounts and
respectively. Then the point that was orginally at now
moves to the new position given by
where

(1.28) 
The coefficients of and are both unity but these factors
are called the scale factors. In other coordinate systems
the scale factors will be different from unity and they are important
in the general forms of div, grad and curl. The infinitesimal area is

(1.29) 
and div, grad and curl take the simple form
Next: 2D Cylindrical Polars
Up: NonCartesian Coordinates
Previous: NonCartesian Coordinates
Prof. Alan Hood
20001106