Heart of the black auroras revealed by Cluster

09 April 2015

Most people have heard of auroras - more commonly known as the Northern and Southern Lights - but, except on rare occasions, such as the recent widespread apparition on 17 March, they are not usually visible outside the polar regions. Less familiar are phenomena known as black auroras, dark patches which often subdivide the glowing curtains of red and green light.

For almost 15 years, ESA's four Cluster satellites have been orbiting Earth, sending back data on electrical fields, magnetic fields and particle populations as they sweep above the region of space where these colourful curtains of light are created.

By flying in close formation through Earth's magnetosphere – the invisible magnetic bubble that surrounds our planet - the quartet has gathered a treasure trove of multi-point observations which help to cast light on the physical processes taking place in auroral nurseries and the secrets of how the dark "cavities" in the shimmering auroras are created.

Auroras are known to be generated by beams of electrons which are accelerated along Earth's magnetic field lines. The fast-moving electrons collide with atoms in the ionosphere at altitudes of between 100 to 600 km. This interaction with oxygen atoms results in a green or, more rarely, red glow in the night sky, while nitrogen atoms yield blue and purple colours.

Whereas bright auroras are created by electrons plunging downward into the ionosphere, neighbouring black auroras are caused by electrons escaping from the ionosphere - like a kind of anti-aurora. However, until now, scientists have been struggling to explain the relationship between the two auroral types.
The first observations of the dynamical behaviour of black auroras were made by the four Cluster spacecraft and reported back in 2001. This study revealed that the electron population of the ionosphere becomes more and more depleted in these dark regions.

Now scientists from the UK and Sweden have used the huge archive of Cluster data to develop the first accurate model of electric fields and currents at the heart of the black auroras. Their new paper, published in the *Journal of Geophysical Research - Space Physics*, accounts for the observed evacuation of electrons from the ionosphere to the magnetosphere and explains the dynamic behaviour of the black aurora.

The scientific collaboration came about as a result of a series of three week-long workshops hosted by the International Space Science Institute (ISSI), which were led by Andrew Wright, a researcher at the School of Mathematics and Statistics in University of St Andrews and a co-author of the paper.

"The ISSI, which is partly funded by ESA, provides a unique facility for scientists to meet and discuss a common research interest, and it was instrumental in bringing us together. Our research resulted directly from our team participating in these workshops," said Wright.

The first step in the diagnosis of the black auroras’ creation was made by Tomas Karlsson, a researcher in the Department of Space and Plasma Physics at the Royal Institute of Technology in Stockholm, Sweden, and a co-author of the paper.

"I have been studying the Cluster data archive over many years because the four spacecraft provide multipoint measurements when they fly through a region of near-Earth space," said Karlsson. "This makes it possible to analyse how physical properties evolve over time.

"On a few occasions, particularly on 18 February 2004, I noticed a weird combination of electrical and magnetic field measurements that were different from normal, and I wanted to understand the physics behind the data. On each occasion, the Cluster spacecraft were flying over the night-time auroral region.

"I presented the data at a workshop held by the International Space Science Institute, which is partly funded by ESA, provides a unique facility for scientists to meet and discuss a common research interest, and it was instrumental in bringing us together. Our research resulted directly from our team participating in these workshops," said Wright.

"The ISSI, which is partly funded by ESA, provides a unique facility for scientists to meet and discuss a common research interest, and it was instrumental in bringing us together. Our research resulted directly from our team participating in these workshops," said Wright.
Institute in Bern, Switzerland, in 2012. This led to a collaboration with team leader Andrew Wright and with Alex Russell, who agreed to try to model the Cluster measurements."

By concentrating on data collected by the Electric Field and Wave (EFW) and Fluxgate Magnetometer (FGM) instruments on the four Cluster spacecraft, the two UK scientists were able to generate a computer model that explained the unusual readings.

"We found strong evidence of a two-way interaction between the ionosphere and the magnetosphere," said Alexander Russell, a post-doctoral Research Fellow in the Department of Mathematics, University of Dundee, UK, and lead author of the paper in *JGR – Space Physics*.

"Auroral arcs are created by electric currents. The beam of electrons shooting down towards Earth along magnetic field lines is actually an electric current aligned with Earth’s magnetic field. It is called an upward, field-aligned current because the negatively charged electrons are moving downward. [1]

"On the other hand, when a downward magnetospheric current meets the ionosphere, electrons are driven upwards and 'sucked' from the ionosphere, creating a black aurora. However, when the electron density in the ionosphere drops markedly the black aurora becomes less intense.

"This evacuation of the ionosphere is essential in shaping the black auroras. The process is much more important on Earth’s nightside than on the dayside because sunlight creates new electrons which fill the ‘hole’.

"Our model demonstrates how this two-way electrodynamic coupling between the magnetosphere and ionosphere works. This is made possible by a horizontal drift of ions in the ionosphere, known as the Pedersen current, which closes the current system."

The main feature of the model is a field-aligned current system comprising a narrow region of downward current sandwiched between two much broader - and much weaker - upward currents. If the downward current intensifies, it can cause a large number of electrons to move upward into the magnetosphere, thus depleting the ionosphere and creating a density cavity.

"In our paper we think of the currents flowing into the ionosphere as being carried by waves which propagate along magnetic field lines," said Andrew Wright. "This a key feature of our theory. The depleted density and electrical conductivity in a black aurora substantially modify the wave reflected from the ionosphere, producing signatures in the magnetosphere like the unusual Cluster observations.

"For the first time we are able to reproduce the phenomenon of the black aurora and in particular what happens at its heart, where strong electric fields are present. We hope that this will lead to a better understanding of
the interaction between the upper atmosphere and the space environment."

"This is a very nice example of how theorists and experimenters can make much greater progress when they work together instead of separately," said Tomas Karlsson.

"The paper presents a major improvement of the existing magnetosphere-ionosphere coupling model," said Philippe Escoubet, ESA’s Cluster project scientist.

"The modelling of the ionosphere's physical state is of prime importance in our modern technological society. For example, GPS signals can be modified by changes in electron content in the ionosphere, so that their navigational and timing accuracy are significantly reduced. Improved modelling of the ionosphere is necessary to make the necessary corrections.

"Aircraft flying over the North Pole rely on radar and radio signals which can also be affected by changes in the ionosphere, so this is not just an academic exercise."

[1] According to convention, negatively charged electrons flow downward, from the magnetosphere to the ionosphere, in an upward field-aligned current. Electrons flow upward, from the ionosphere to the magnetosphere, in a downward field-aligned current.

More information

"Magnetospheric signatures of ionospheric density cavities observed by Cluster" by A.J.B. Russell, T. Karlsson and A.N. Wright is published in Journal of Geophysical Research - Space Physics, issue 120, April 2015.

Cluster is a constellation of four spacecraft flying in formation around Earth. It is the first space mission able to study, in three dimensions, the natural physical processes occurring within and in the near vicinity of the Earth’s magnetosphere. Launched in 2000, it is composed of four identical spacecraft orbiting the Earth in a pyramidal configuration, along a nominal polar orbit of 4 × 19.6 Earth radii (1 Earth radius = 6380 km). Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields over wide frequency ranges, and key physical parameters characterising electrons and ions from energies of near 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC) at the Rutherford Appleton Laboratory, United Kingdom, and implemented by ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany.

The Cluster Science Data System is a set of nationally distributed data centres, which generate and maintain selected data sets for the experiments most closely associated with each centre.
The Cluster Science Archive is the depository of processed and validated Cluster data, raw data, processing software, calibration data, documentation and other value-added products. All of the Cluster data are public domain.

The International Space Science Institute (ISSI) is an Institute of Advanced Studies based in Bern, Switzerland. The institute's work is interdisciplinary, focusing on the study of the Solar System, but also encompassing planetary sciences, astrophysics, cosmology, astrobiology, and the Earth sciences. One of its main activities is the interpretation of experimental data collected by space research missions. Founded in 1995, ISSI is a non-profit organization and a foundation under Swiss law. ISSI operations are supported by grants from the European Space Agency, the Swiss Confederation, the Swiss National Science Foundation (SNF), the University of Bern and the Space Research Institute (IKI).

Contact

Alexander Russell
Postdoctoral Research Fellow
Department of Mathematics
University of Dundee
United Kingdom
Email: arussell@maths.dundee.ac.uk
Phone: +44 (0)1382 384485

Tomas Karlsson
Department of Space & Plasma Physics
Royal Institute of Technology
Stockholm
Sweden
Email: tomask@kth.se
Phone: +46 8 790 77 01

Andrew Wright
Reader
School of Mathematics and Statistics
University of St Andrews
United Kingdom
Email: anw@st-andrews.ac.uk
Phone: +44 (0)1334 463736

Philippe Escoubet
Cluster Project Scientist
Scientific Support Office
Directorate of Science & Robotic Exploration
ESA, The Netherlands
Email: Philippe.Escoubet@esa.int
Phone: +31 71 565 3454

Last Update: 09 April 2015

For further information please contact: SciTech.editorial@esa.int

Images And Videos

Aurora over Icelandic lake (http://sci.esa.int/jump.cfm?oid=55767)

Black aurora near Tromsø (http://sci.esa.int/jump.cfm?oid=55731)

Related Publications


See Also

Cluster quartet probes the secrets of the black aurora (http://sci.esa.int/jump.cfm?oid=29100)

Related Links

International Space Science Institute (ISSI) (http://www.issibern.ch/)