Hybrid magnetohydrodynamic-kinetic electron closure methods and shear Alfvén waves in nonuniform plasmas

P. A. Damiano and A. N. Wright
Mathematical Institute, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom

R. D. Sydora
Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet, Duesseldorf, Germany

J. C. Samson
Department of Physics, University of Alberta, Edmonton, Alberta, Canada, T6G 2J1

(Received 20 August 2004; accepted 20 December 2004; published online 17 March 2005)

Two hybrid magnetohydrodynamic-kinetic electron models of shear Alfvén waves with different closure schemes involving the assumption of quasineutrality are compared. One method assumes quasineutrality directly while the other allows for a nonzero \(\mathbf{v} \cdot \mathbf{j} \) that produces a “correcting” electric field. The interpretation of the different closure schemes is discussed and the two methods are shown to yield consistent results for both the cases of a constant and variable density along the field line. In the variable density case the hybrid system with and without a shear Alfvén wave perturbation is also contrasted. In the latter case, static parallel electric fields that increased with the plasma temperature were generated to support the density gradients. When the system was perturbed, a time dependent parallel electric field contribution oscillated around the static field structure needed to support the profile. Landau damping effects were also investigated and the energy invariant for the systems derived. © 2005 American Institute of Physics.

[DOI: 10.1063/1.1862627]

I. INTRODUCTION

Shear Alfvén wave pulses or standing waves (called geomagnetic field line resonances) on closed magnetic field lines are common occurrences in the earth’s magnetosphere. To lowest order, the structure of their currents can be seen as ion polarization currents perpendicular to the ambient magnetic field closed by electron currents parallel to the field line, which together maintain quasineutrality. Traditional magnetohydrodynamic (MHD) models (in the limit of \(m_e \rightarrow 0, E_z \rightarrow 0 \)) have had much success in the study of the formation and evolution of such systems, but in order to make the link to auroral arc formation, information on the parallel electric field is needed to study the electron acceleration process. Incorporating electron mass via the inclusion of the generalized Ohm’s law allows for the study of the parallel electric field needed to study the electron acceleration process. Incorporating electron mass via the inclusion of the generalized Ohm’s law allows for the study of the parallel electric field in the MHD description, but these studies neglect potentially important effects such as the mirror force contributions and do not elucidate anything about the structure of the electron distribution functions. Therefore models incorporating a kinetic electron description and wave-particle interactions are required.

Models using particles or direct Vlasov solution for either the ions or electrons while the other species is described by fluid equations are generally known as hybrid models. Such simulation models with particle ions and fluid electrons have been extensively used to investigate nonlinear processes in laboratory and space plasmas. Some of the early hybrid simulation models were applied to the study of laboratory pinch experiments and the structure of the magnetospheric bow shock. Subsequent developments have mainly been in multidimensional simulation models with application to collisionless shocks, magnetic reconnection, and ion beam instabilities. There have been relatively few investigations using fluid ion and particle/kinetic electron hybrid models but as alluded to above, this type of hybrid approach is needed for the study of shear Alfvén waves associated with auroral arc formation. In recent years, the focus has been primarily on Alfvén wave pulses using test-particle simulations and more self-consistent numerical hybrid approaches representing the electrons in a Vlasov type formulation or combining MHD with a system of kinetic electrons in a particle-in-cell (PIC) type formulation. To a lesser extent, standing shear Alfvén waves have also been studied in the context of a hybrid MHD-kinetic electron model (which is a variation of the approach used in Ref. 21 as well as more analytical studies which combine MHD with a Vlasov equation for the electrons, some of which incorporate mirror force effects.

In this paper we consider standing shear Alfvén wave dynamics within a hybrid MHD-kinetic framework (fluid ion, kinetic electron) and compare two different closure schemes, with and without the assumption of quasineutrality. Typical scale lengths in auroral plasmas are 1–100 km much greater than the electron gyroradius and Debye length, and with frequencies much below the plasma frequency. Therefore, we use a cold ion fluid model with electron dynamics treated in the guiding center approximation. One approach (used in Ref. 21 for the study of electron acceleration by shear Alfvén wave breaking) assumes quasineutrality di-

directly \((\nabla \cdot \mathbf{j} = 0)\), and will be termed zeroth order. A first order approach was used by Ref. 22 and does not directly assume quasineutrality but allows for a nonzero \(\nabla \cdot \mathbf{j}\) which produces a corresponding perpendicular electric field contribution. This in-turn affects the parallel electric field via the generalized Ohm’s law. For limits where the plasma wants to maintain quasineutrality, it can be viewed as a correcting electric field. The zeroth order model is one-dimensional (1D) field aligned while the first order model is 2D. However in the 2D case, the radial density \((n)\) is assumed constant and the shear Alfvén wave perturbation periodic, making it straightforward to draw comparisons between the two models. In addition to this comparison, the work extends the consideration of standing waves begun in Ref. 22 to the case of nonuniform plasmas.

The paper has four main sections. In the first section, the MHD and two hybrid approaches are summarized. In the second section; the MHD and hybrid approaches and then the two hybrid approaches themselves are contrasted for a constant density system. The third section considers the case of inhomogeneity with a field aligned density gradient in both the static limit and for the system with a shear Alfvén wave perturbation, where Landau damping effects will be examined. The fourth section contains a concluding summary and the energy invariant for both hybrid models is derived in the Appendix.

II. DESCRIPTION OF MODELS

A. Cold plasma MHD model

In the MHD limit \((\omega_{\text{MHD}} < \omega_{pe}, L \gg \lambda_D, r_g)\), the plasma is quasineutral \((\nabla \cdot \mathbf{j} = 0, n_i = n_e)\) on length scales \(L \gg \lambda_D\), where \(L\) is the characteristic length scale of the system, \(\lambda_D\) is the Debye length, and \(r_g\) is the typical ion gyroradius. The acceleration of electrons along the field line is proportional to \(-E_z/j_z\) and so \(m_e \rightarrow 0\) and \(E_z \rightarrow 0\) at the same rate in the MHD picture. The response of the electrons is instantaneous.

A 1D plasma model along a magnetic field pointing in the \(z\) direction is considered and assuming \(\partial \alpha/\partial y = 0\), a simple cold plasma MHD model for a shear Alfvén wave system is given by

\[
\frac{\partial \alpha}{\partial t} = -\mu_o V_A^2 \frac{\partial j_z}{\partial z},
\]

\[
\frac{\partial j_z}{\partial t} = -\frac{1}{\mu_o} \frac{\partial \alpha}{\partial z},
\]

where \(\alpha = \partial E_z/\partial x\) and \(V_A = B_0/\sqrt{\mu_o \rho}\) is the Alfvén wave speed. The first equation can be derived from the single fluid momentum equation and the ideal MHD approximation (or the definition of the polarization current) along with quasineutrality \((\partial j_z/\partial z = -\partial j_z/\partial x)\) and represents the polarization current due to ions. Of course, a finite \(\partial n_i/\partial z\) is needed to balance \(\alpha\). However, this is on MHD time scales and the quasineutrality condition applies on the time scale of the plasma frequency. Therefore it is not contradictory to use \(\nabla \cdot \mathbf{j} = 0\) on the right-hand side (RHS) of Eq. (1). The derivation assumes that there is no perpendicular gradient in \(V_A\) (or \(p\)), otherwise an extra term arises and the system is more complicated to deal with. The second equation is derived from Ampère’s \((\mu_o j_z = \partial E_z/\partial x)\) and Faraday’s laws \((\partial E_z/\partial t = -\partial j_z/\partial z)\) and incorporates the massless electrons response to maintain quasineutrality.

B. Zeroth order hybrid approach: Direct assumption of quasineutrality

For the zeroth order hybrid model developed in Ref. 21, the same basic assumptions (except \(m_e = 0\)) used in the MHD model hold as well. The initial equation representing ion perpendicular polarization current is the same as in the preceding section (including built in quasineutrality condition). Finite but small electron mass yields a finite \(\omega_{pe}\), however, \(\omega_{\text{MHD}} \ll \omega_{pe}\) still holds and one can use \(\nabla \cdot \mathbf{j} = 0\).

With \(m_e \neq 0\) now, Eq. (2) is replaced by an actual system of electrons and the generalized Ohm’s law is used for computing the parallel electric field. Since the typical electron gyroradius is so much smaller than typical MHD scale lengths, the guiding center equations can be used for the parallel electron dynamics and the model equations can be expressed as

\[
\frac{\partial}{\partial t} \left(\frac{\partial E_z}{\partial x} \right) = \frac{\partial \alpha}{\partial t} = -\mu_o V_A \frac{\partial j_z}{\partial z},
\]

\[
\frac{m_e}{\rho} \frac{d \rho}{dt} = -e E_z,
\]

\[
\frac{dr_z}{dt} = v_z,
\]

\[
E_z = -\frac{1}{1 + \lambda^2 z^2} \left(\frac{\alpha}{\partial \rho} + \frac{m_e}{\rho} \frac{D_x}{\rho} \right),
\]

where Eqs. (4) and (5) are the guiding center equations and Eq. (6) is the generalized Ohm’s law. In this version, Faraday’s law and Ampère’s law have been used to replace the term with the partial time derivative of current density and the equation is a 1D analog of the parallel electric field equation used in Refs. 21 and 22. The quantity \(j_z = -e \Sigma \nu_z S(z, r_g)\) is the parallel current computed from the electrons. \(D_x = \Sigma \nu_z^2 S(z, r_g)\) (using the notation of Ref. 21) is the second moment of the electron distribution function, and \(S(z, r_g)\) is the particle shape function (see Ref. 25) which is also related to the interpolation of the moments to the grid cells. The electron inertial length \(\lambda_e = m_e/\mu_o n_e e^2\) defines the fundamental length scale on which electron mass effects become important (usually below about 10\(\lambda_e\)) and evolves as a function of the electron number density \(n_e = \Sigma S(z, r_g)\) to be consistent with the assumption of quasineutrality \((n_i = n_e)\). The Alfvén speed \(V_A\) similarly evolves (via \(\rho = n m_i\)).

C. First order hybrid approach

In the first order approach we do not fix the value of \(\nabla \cdot \mathbf{j}\), but allow for a first order correction via the perpendicular electric field contribution. If the plasma wants to be quasineutral, but the parallel electron current differs from the
divergence free MHD solution, a correcting field is produced to compensate. Therefore quasineutrality is a result rather than an initial assumption we impose on the model. It can be viewed as a numerical analog to a physical plasma oscillation produced in a bid to maintain quasineutrality. In Ref. 22, this correcting electric field was introduced as a separate step, but will be reformulated here in a more self-consistent way as an extension of the zeroth order assumption of quasineutrality as defined previously.

First of all, as in Ref. 22 the model consists of the cold plasma MHD equations given by (for \(\partial \phi / \partial y = 0\))

\[
\frac{\partial \mathbf{u}}{\partial t} = \frac{B_o}{\mu_o \rho_o} \left(\frac{\partial \mathbf{b}}{\partial \mathbf{z}} - \frac{\partial \mathbf{b}}{\partial \mathbf{x}} \right),
\]

(7)

\[
\frac{\partial \mathbf{b}}{\partial t} = \frac{\partial \mathbf{E}_x}{\partial \mathbf{z}},
\]

\[
\frac{\partial \mathbf{E}_x}{\partial t} = \frac{\partial \mathbf{E}_x}{\partial \mathbf{x}} - \frac{\partial \mathbf{E}_x}{\partial \mathbf{z}},
\]

\[
\frac{\partial \mathbf{E}_x}{\partial t} = - \frac{\partial \mathbf{E}_x}{\partial \mathbf{x}}.
\]

and taking the divergence of both sides we are left with

\[
\epsilon_o \frac{\partial (\nabla \cdot \mathbf{E})}{\partial t} = - \nabla \cdot \mathbf{j},
\]

(10)

which is the same expression as derived in Ref. 22 using Poisson’s equation and the continuity equations for the electrons and ions. Since \(E_{z} \ll E_{x}\) and \(k_{x} = 0\), Eq. (10) can be rewritten as

\[
\epsilon_o \frac{\partial \alpha}{\partial t} = - \nabla \cdot \mathbf{j} = - \left(\frac{\partial j_x}{\partial \mathbf{x}} + \frac{\partial j_z}{\partial \mathbf{z}} \right).
\]

(11)

Now, due to the low frequency nature of MHD it is customary to neglect the displacement current yielding \(\nabla \cdot \mathbf{j}_{MHD} = 0\) which is one form of the statement of quasineutrality. However, imagine that at a given time \(t\) the electrons are in a position so that the electron current is not in exact agreement with the MHD current. Therefore, we can let \(\mathbf{j} = \mathbf{j}_{MHD} + \delta \mathbf{j}\) and \(\nabla \cdot \mathbf{j} = \nabla \cdot \mathbf{j}_{MHD}\) which, via Eq. (11), yields an additional contribution to \(E_{z}\). Therefore, the total value of \(\alpha\) is

\[
\alpha = \alpha_{MHD} + \delta \alpha = \alpha_{MHD} + \alpha_{e},
\]

(12)

where \(\alpha_{MHD} = - \partial / \partial \mathbf{x} (\mathbf{u} \times \mathbf{B}) = - (\partial u_{x} / \partial \mathbf{x} \mathbf{B}_{o}\) and \(\alpha_{e}\) has been introduced for consistency of notation with Ref. 22. With this, Eq. (11) becomes

\[
\epsilon_o \frac{\partial}{\partial t} (\alpha_{MHD} + \alpha_{e}) = - (\nabla \cdot \mathbf{j}_{MHD} + \nabla \cdot \delta \mathbf{j}),
\]

(13)

and since \(\partial \alpha_{MHD} / \partial t = \nabla \cdot \mathbf{j}_{MHD} = 0\) this can be reduced to

\[
\epsilon_o \frac{\partial \alpha_{e}}{\partial t} = \nabla \cdot \delta \mathbf{j} = - \nabla \cdot \mathbf{j}.
\]

(14)

Using Eq. (12), the expression for the parallel electric field becomes

\[
E_{z} = - \left(\lambda_{e}^2 \frac{\partial \alpha_{MHD}}{\partial \mathbf{z}} + \frac{m_{e} \partial D_{e}}{\partial \mathbf{z}} + \lambda_{e}^2 \frac{\partial \alpha_{e}}{\partial \mathbf{z}} \right),
\]

(15)

or using Eq. (11) it can also be expressed as

\[
E_{z} = - \left(\lambda_{e}^2 \frac{\partial \alpha_{MHD}}{\partial \mathbf{z}} + \frac{m_{e} \partial D_{e}}{\partial \mathbf{z}} - \lambda_{e}^2 \epsilon_{o} \frac{\partial}{\partial \mathbf{z}} \left(\int_{0}^{t} \nabla \cdot \mathbf{j} \right) \right),
\]

(16)

where the parallel current density used in the calculation of \(\nabla \cdot \mathbf{j}\) is computed directly from the electrons which are again advanced using the guiding center equations. The evaluation of the integral over time is done using a simple Euler scheme. At a specific time \(t\), the integral is advanced in a predictor step with the value of \(\nabla \cdot \mathbf{j}\) determined from the predicted fields and then the final value of the integral is computed using the average of the divergence in current density computed using the predicted and corrected fields. As indicated previously, the approach is a little different than that used in Ref. 22, but yields consistent results. Also as in Ref. 22, the electron inertial length \(\lambda_{e}\) is fixed at its equilibrium value.

In summary, Eqs. (4), (5), (7), and (16) along with the ideal MHD approximation for the perpendicular electric field constitute the 2D first order hybrid model. For simplicity of notation any future reference to the 2D hybrid model will have the first order nature and any reference to the 1D hybrid model will have the zeroth order nature.
ary conditions were assumed. For the 2D hybrid model, pe-
be consistent with those used in Ref. 22 and periodic bound-
periodic boundary conditions were also used in \(z \) and open
boundary conditions \((\partial / \partial x=0)\) in \(x \). In nondimensional units, the background magnetic field is \(1 \), \(V_A=2 \), and \(\rho_e=0.25 \).

Figure 1 illustrates the relative evolution of \(\alpha \) and \(j_z \) as a function of time for the MHD system. This result is con-
trasted in Fig. 2 where the MHD and 1D hybrid models (using \(v_{th}=1.41 \)) solutions are plotted simultaneously. Lan-
dau damping effects (as discussed in Ref. 22) are clearly evi-
dent. In both simulations 50 grid points and a time step of
0.0014 in nondimensional units were used. The hybrid simu-
lation was done using 80 000 simulation electrons.

The energy invariant of the 1D hybrid system (see the Appendix) is given simply in nondimensional form by

\[
T_{E,1D} = -\int_0^t \int_0^{L_z} (\mathcal{E}_Z j_z) \, dz \, dt + \frac{1}{2} C_{e1} \sum_i v_i^2 ,
\]

where the first term is the Poynting flux energy entering the 1D elemental flux tube from perpendicular to the field line, the second term is the kinetic energy of the electron motion along the field line, and \(C_{e1} \) is a dimensionless constant (see the Appendix). The result for the \(v_{th}=1.41 \) case is illustrated in Fig. 3(a) showing that energy is conserved between the electrons and fluid during the Landau damping process. Fig-
ure 3(b) shows the relative numerical error in the energy as a function of time which is well below 0.01% for the length of the run. High frequency oscillations develop as the grid scale noise due to the particle interpolation scheme builds up and the overall error decreases with time as the wave amplitude is reduced due to Landau damping. The effects of the grid scale noise over the longer term are worse for larger grid
spacings as the fluctuations represent a significant fraction of the actual wavelength of the shear Alfvén wave. Therefore, finer grid spacings achieve better results for longer runs but require significantly larger numbers of particles to achieve similar results with regards to the resolution of the parallel electric field. For the results here, we have chosen the grid scale and particle number to obtain the best results for the first 3–4 Alfvén periods which is sufficient to demonstrate the operation of the code without needing too much computational time.

C. Comparison of hybrid models

The hybrid models are contrasted by selecting an initial \(u_y \) profile periodic in \(x \) as well as \(z \) and using a profile of \(\partial E_x / \partial x \) for a slice along a certain value of \(x \) for the 1D model. The initial profile chosen for the 2D model was

\[
u_{y0} = 0.05 \sin \left(\frac{2\pi x}{0.2} \right) e^{-(x - 0.5)^2/0.0001} \sin \left(\frac{2\pi z}{L} \right).
\]

The exponential cutoff in the \(x \) direction was used to minimize any edge effects from the boundaries [where open boundary conditions are assumed (\(\partial / \partial x = 0 \))]. The dependence as a function of \(x \) is illustrated in Fig. 4. In terms of the 1D model, we take the initial parameters so that it represents a line along \(z \) at \(x = 0.5 \). Therefore the initial profile for \(\alpha \) is given by

\[
a_0 = \frac{\partial E_x}{\partial x} = -\frac{\partial u_{y0}}{\partial x} = -0.05 \frac{2\pi}{0.2} \cos \left(\frac{2\pi x}{0.2} \right) \sin \left(\frac{2\pi z}{L} \right).
\]

where \(B_x = 1 \) in nondimensional units and although not stated explicitly in the equation, this corresponds to a value for \(k_x \) of \(2\pi/0.2 \).

Figure 5 illustrates the amplitude of the electron current density as a function of time for both the 1D and 2D models with \(v_{th} = 0.71 \). The point of interest is the divergence between the 1D model results with and without the pressure term. As indicated in Ref. 22, for the 2D model results, the pressure term had insignificant contribution. The explanation for this difference in the importance of this term in the context of the 2D model will be highlighted in the following section. For the 2D model simulations presented in this section, 200 grid points were chosen in the \(x \) direction and 25 were chosen in the \(z \) direction, \(10^6 \) simulation electrons were used (\(n_{p1} = 1000, n_{p2} = 1000 \)), and the time step was 0.00071. The 2D MHD results were obtained using the 2D hybrid model with the kinetic electron effects turned off [reducing the model to Eqs. (7) and (16) without the last two terms].

The fact that quasineutrality is maintained both in the 1D and 2D models is illustrated in Fig. 6 with the plotting of the divergence of the current density along with the component terms. In the 2D model, the divergence is computed directly from \(j_x \) and \(j_z \) while in the 1D model \(j_x \) is first calculated from \(\alpha \) using

\[
\frac{\partial j_x}{\partial x} = \frac{\rho}{B_0^2} \frac{\partial \rho}{\partial t} \left(\frac{\partial E_x}{\partial x} \right) = \frac{\rho}{B_0^2} \frac{\partial \alpha}{\partial t},
\]

which has been derived from the single fluid momentum equation. The time derivative is calculated simply using the present and previous time step values of \(\alpha \). Although not the most accurate method, it serves to illustrate that quasineutrality...
ity is properly maintained. This is as would be expected given the initial assumptions for the 1D model. The points plotted for the 2D model serve to illustrate that even without the direct assumption of quasineutrality, the use of the correction field method served to maintain quasineutrality to good order. It should be noted that the results plotted here are for close to maximum current density values. As these values decrease, grid scale noise increases fluctuations in the divergence calculation, but this can be lessened with increased resolution.

The total energy invariant for the 2D hybrid model is given by (see the Appendix)

\[T_{E2D} = T_u + T_b + T_e = \int_A dxdz \frac{\rho u^2}{2} + \int_A dxdz \frac{b^2}{2} + \frac{1}{2} C_{el} \sum_i v_i^2 \]

and is displayed in Fig. 7 along with the individual terms in Eq. (24). In this case, the error in energy as a function of time increased almost linearly to a value of about 0.4% at \(t = 50 \).

D. Interpretation

In order to elucidate the reason as to why the pressure term in the generalized Ohm’s law is negligible for the 2D model we present two simulations with identical parameters except that in the first case the pressure term is included and in the second, it is excluded. For the following comparison, it is convenient to rewrite Eq. (15) in nondimensional form (as individual terms will be referenced in this notation) which is given by

\[E_z = -\left(\lambda_x^2 \frac{\partial \alpha}{\partial z} + C_D \frac{\partial D_e}{\partial z} + \lambda_z^2 \frac{\partial \alpha}{\partial z} \right), \]

where all variables are in nondimensional units and the normalization constant \(C_D = m_i V_A/(eB_L) \). For these simulations, the parameters are the same as for the 2D model in the preceding section except that \(v_{th} = 1.41 \) was used to accentuate the pressure contribution. Figure 8 presents slices of the different terms in the equation for \(E_z \) at \(t = 5 \) for both the case including (a) and excluding pressure (b). The curves for \(\frac{\partial \alpha}{\partial z} \) and \(E_z \) have been smoothed using the same 2D spectral filter as outlined in Ref. 22.

![Image](https://via.placeholder.com/150)

FIG. 7. Total and component energies vs time for the 2D hybrid model with \(v_{th} = 0.71 \).

![Image](https://via.placeholder.com/150)

FIG. 8. Slices along \(z \) (closest to \(x = 0.5 \)) at \(t = 5 \) of the terms in the equation for \(E_z \) for the 2D hybrid model including pressure (a) and excluding pressure (b). The curves for \(\frac{\partial \alpha}{\partial z} \) and \(E_z \) have been smoothed using the same 2D spectral filter as outlined in Ref. 22.
The explanation for this is that the bad guess for the parallel electric field leaves the distribution of electrons in a state that is not very quasineutral relative to the MHD fields. The resulting nonzero divergence leads to an electric field contribution which compensates for the lack of a pressure term, thus restoring quasineutrality. Since the system wants to be quasineutral, the algorithm allows for the creation of a compensating perpendicular electric field which more or less compensates for what the inclusion of a pressure term would have provided. This can possibly be viewed as a numerically created plasma oscillation, but since it is of much higher frequency than the Alfvén time scales that dictate the rest of the system, it does not affect the results in any significant way. This methodology would not distinguish between physical and numerical sources of quasineutrality violation and so caution must be used in interpreting the importance of the individual terms. As far as the algorithm is concerned, the generalized Ohm’s law is simply an initial good guess to the parallel electric field.

Whereas this method can be viewed to oscillate around the proper solution, the direct assumption of quasineutrality can be viewed as specifying exactly what the solution should be on an instantaneous time scale. Therefore, all the information about the parallel electric field must be contained in the generalized Ohm’s law to be transferred instantaneously. If a term is missing, then the physics associated with that term is lost.

Figure 9 illustrates the components of the parallel electric field from the 1D model when the pressure term has been included in the generalized Ohm’s law. The fact that the two models give the same result under these conditions is emphasized here in comparison with Fig. 8 as the structure of the fields are basically the same. The 1D model results have not been filtered at all, which illustrates that the results in the 2D model case are not a function of the filtration used. The consistent results of the two approaches and the fact that space plasmas are generally quasineutral suggests that the initial direct assumption of quasineutrality might be a better choice. However, the simplicity of the formalism of the zeroth order model is a result of assuming \(k_y = 0 \) and a constant density in the perpendicular direction. The closure in the first order approach is not limited by these assumptions and allows for a simple formulation in terms of the traditional single fluid MHD equations. The aim here has been to contrast the two approaches and better understand what the closure schemes entail. The choice of approach is best decided by the application.

In addition, as both models do not account for ion motion parallel to the field line, they are valid only in the limit of the plasma \(\beta \) on the order of \(m_i/m_e \) which is the case for the parameters used here, \(\beta = 2\mu_n k T / B_0^2 = \frac{v_{th}}{\sqrt{m_e}} \) for \(v_{th} = 1.41 \) where shear Alfvén waves are strongly resonant with electrons. In this range, the results are consistent with the inertial Alfvén wave dispersion relation for \(\beta \ll m_e/m_i \) and the kinetic Alfvén wave dispersion relation for \(m_e/m_i \ll \beta \ll 1 \) (neglecting the ion gyroradius term).\(^{22,26} \) The Landau damping rates predicted in this range are in agreement with the kinetic dispersion relation derived in Ref. 22. Therefore, the model is valid for both electron inertial and thermal effects in this low \(\beta \) range, but of limited validity as the \(\beta \) gets substantially larger than \(m_i/m_e \) and tends toward 1 as the importance of the shear Alfvén wave interaction with ions grows. As the models were designed for study of Alfvén wave effects in the electron acceleration region where the plasma \(\beta \ll m_e/m_i \) (Refs. 26 and 27), neglecting the ion effects is justified to first order.

The additional advantage of these hybrid approaches is that by not incorporating kinetic ions, they save on the extensive computational time needed to consider the full ion dynamics thus making it simpler to study large scale systems such as the field line resonance. However, future comparisons with fully kinetic approaches (as used in Ref. 28) (or extending the present models to include kinetic ions) are necessary to more clearly elucidate the limits of the current approximation for the long term evolution of the system. As well, although the present hybrid models do not consider ion kinetic effects, fully kinetic PIC models are sometimes limited by the necessity to choose the ratio of \(m_i/m_e \) unrealistically low and thus the contrast of approaches is beneficial for the overall study of the system.

IV. SIMULATIONS WITH DENSITY GRADIENT

For the following section a symmetric density profile as a function of \(z \) was designed. This is displayed in Fig. 10 and is given mathematically by
where \(n_{e2} \) is the electron number density of the well, \(n_{e1} \) is constant high density region at either end of the range in \(z \), \(b \) is the length of constant regions of number density \(n_{e2} \), and \(a \) is the length of the sloped regions connecting the areas of constant density. For the 2D model, the density was assumed to be constant in the \(x \) direction. The original aim for defining a profile of this nature was to consider the case along the earth’s closed field lines where the density is relatively constant along the field line until there is a large increase toward the ionospheric boundaries at either end of the field line. Addressing this in a more complete way though is left to future work.

Since we will be considering large values of \(k_x \), corresponding to small perpendicular scale lengths in \(x \), the term dropped in Eq. (16) must be retained and the expression for the parallel electric field becomes

\[
\frac{\partial E_y}{\partial x} = \frac{1}{\lambda_x^2} E_z = \frac{\partial}{\partial z} \left(\frac{\partial E_x}{\partial x} \right) + \frac{1}{\epsilon_x \epsilon_0} \int_0^t dt \left(\nabla \cdot \mathbf{J} \right),
\]

where as in Ref. 22, \(E_z \) is determined using a tridiagonal solver (where a three-point representation was used for \(\partial^2 E_z / \partial z^2 \)) after the calculation of the right-hand side. For comparisons between the 1D and 2D models, the same perturbations as outlined in Sec. II C were used except that the amplitude in Eq. (21) [and correspondingly in Eq. (22)] was halved in order to keep the density fluctuations small.

A. Static parallel electric fields: No Alfvén wave perturbation

Before introducing the perturbation \(\alpha_s \), we examine the static case to see the structure of the parallel electric field generated to support the imposed density gradient. In Fig. 11(a) is displayed the field aligned density profile for the parameters \(a=5, b=1.5, n_{e1}=0.25 \), and \(n_{e2}=1.25 \), where the value of \(n_{e2} \) is the same as used for the constant density in the last section. Figure 11(b) displays the parallel electric field profiles from the 1D hybrid model that support the density gradient for two background maxwellian distribution functions with thermal velocities of \(v_{th}=0.71 \) and \(v_{th}=1.41 \). As expected, fields of opposite sign support the opposing density gradients and a significantly larger field is required in the \(v_{th}=1.41 \) case since the energy of the electrons is significantly larger than in the former case. The profiles displayed here are for \(t=5 \) and although there are minor shorter wave-length fluctuations in profiles over time, they maintain the same basic large scale length profile over the entire length of the run. These simulations (and those in Sec. IV B) used 50 grid points with a time step of \(1.25 \times 10^{-3} \) and \(3 \times 10^{5} \) simulation electrons to clearly see the parallel electric field profiles without any postsimulation filtration.

It should be noted that to have a constant temperature profile in the presence of a density gradient is not a necessarily realistic situation, but the aim here is simply to examine the operation of the models in this limit rather than accurately represent a physical system. Generally (and as evident in two fluid simulations), the electrons would try to adjust so that \(\nabla \cdot \mathbf{J} = 0 \) along the field line. These hybrid models, however, do not reproduce this behavior as the MHD component does not account for ion motion parallel to the field line. However, the situation as presented here is not entirely unrealistic and can occur where ions are gravitationally bound (such as in the auroral ionosphere), and static field aligned electric fields exist to support the electron population and maintain quasineutrality. As well, since the response time of ions along the field line is much slower than...
the electrons, the time scale for the evolution toward \(\nabla \cdot \vec{p} = 0 \) can mean that quasistatic parallel electric fields must persist for long periods relative to the electron transit timescale across the region of density gradient.

B. Electric field and density perturbations

For the constant density case, the sin profile for \(\alpha_0 \) used was an exact eigenmode of the system, but that is not the case with the variable density profile. This is illustrated in Fig. 12(a) where the exact eigenmode for the density profile used in the simulations with no perturbation is plotted along with a sin profile of the same amplitude. The exact eigenmode was determined from the solution of the dispersion relation using the shooting method. The two profiles do not strongly diverge and so it was not expected that using the exact eigenmode over a sin profile would change the evolution of the system dramatically. This is confirmed in Fig. 12(b) where the parallel current density at \(L/2 \) is plotted as a function of time for both profiles using the 1D hybrid model and using the sin profile in the 2D model. The results are generally very consistent with each other, although as would be expected the 1D and 2D models using the initial sin perturbation are the closest. This also confirms that both the zeroth and first order closure schemes yield consistent results in the case where field aligned density gradients are present. For the 2D model calculations, 100 grid points were used in each direction with a time step of \(2.5 \times 10^{-4} \) and \(10 \times 10^6 \) simulation electrons. The electron inertial length \(\lambda_e \) was allowed to vary as a function on \(n_e \) as it resulted in greater numerical stability in the presence of the steep density gradients under consideration here.

C. Landau damping

The aim of this section is to investigate how Landau damping is affected by the presence of a field aligned density gradient. This was accomplished by doing a series of runs starting with constant electron number density \(n_{e1} \) and then gradually filling in the well until the second constant density system \(2n_{e1} \) was reached. This progression is illustrated in Fig. 14. The wells in this case are not as deep as in the previous examples in this section because the damping rate

FIG. 12. (a) Exact shear Alfvén wave perturbation eigenmode for \(\alpha \) (dashed line) for the density profile in Fig. 11 compared with sinusoidal perturbation (solid line). (b) Field aligned electron current at \(L/2 \) for runs using the sin perturbation for both the 1D hybrid (solid line) and 2D hybrid (dotted line) models and exact eigenmode perturbation (dashed line) in the 1D model.

FIG. 13. (a) Fluctuation of the parallel electric field over an Alfvén period for the 1D hybrid model using the sin perturbation in Fig. 12. (b) Corresponding electron number density fluctuations (including 2D hybrid model comparison).
for \(n_e = 1.25 \) was too low. As is, the system progresses between two constant densities, both of which are relatively heavily damped.

In all cases, the system was perturbed by the same sin profile for \(\alpha_0 \). As with the calculations in Sec. IV B, the amplitude of the shear velocity in Eq. (21) was halved, but the value of \(k_x \) was doubled \((k_x = 2\pi / 0.1)\) and so the amplitude for \(\alpha_0 \) was double that in Fig. 12(a). The value of \(k_x \) was increased to make the damping visible in a few Alfvén periods and the values of \(u_y \) were kept small so that the perturbation density fluctuations would not completely dominate the background profile. For these calculations, the number of grid points was increased to 100 due to the steepness of some of the profiles, the time step was dropped to \(6.6 \times 10^{-4} \) and \(1 \times 10^5 \) simulation electrons were used.

The evolution of the parallel current density at \(L/2 \) in each case is illustrated in Fig 15. As is evident, the damping rate slowly decreases as the well is filled, migrating from the first constant density limit to the second. This is as would be expected with the one extra interesting feature of almost no damping in case 6 which corresponds to the situation of a narrow well. Somehow, the adjacent presence of static fields supporting the opposing density gradient makes less efficient the wave-particle interactions upon which the damping depends. It should be noted that when an additional simulation was done with the well centered at about \(z = 15 \), this feature vanished and the system was damped consistent with the others. Therefore, the relative phase between the well and wave is important for electron phase space orbits to be effected in the “correct” way to impede the damping. A more detailed analysis of what is occurring in this case is beyond the scope of this work and so will be left for future studies.

These qualitative results are emphasized in Table I where the period, frequency and damping rate \(\gamma \) are tabulated. The damping rates were computed from the natural log of the absolute values of the period and half period points in Fig. 15. The profiles were first filtered to clear off the high frequency noise and only points for \(t \leq 70 \) were used in the calculation. As is evident, the damping rate for case 6, is smaller by at least of a factor of 2 from all the others. This is also the case in the last column of the table for \(\gamma / \omega \). This ratio more or less represents the damping efficiency per Alfvén cycle which given the range of error seems relatively constant except for the significant drop for case 6.

The damping rates for the two constant density cases was determined from the dispersion relation of the hybrid MHD-kinetic system (see Ref. 22). For \(n_{e_1} = 0.25 \) and \(n_{e_2} = 0.5 \) the theoretical damping rates were \(-0.0157\) and \(-0.00989\) respectively which are in good agreement with the numerical rates in Table I for cases 1 and 7.

Although not displayed here, a series of runs was tried where “a” (the range of the gradient region) was set to 1 and “b” was adjusted to fill in the well. The same qualitative behavior was evident as noted here. Therefore, the ratio of the areas covered by each density region is probably more significant to the damping behavior than the steepness of the gradients (with the exception of case 6).

V. SUMMARY AND DISCUSSION

We have contrasted two methods of closure for hybrid MHD-kinetic models of shear Alfvén waves in constant and variable density systems and developed the energy invariant in one and two dimensions. The first method used in Ref. 21...
directly assumed quasineutrality in the form $\nabla \cdot \vec{j} = 0$ while the second method used in Ref. 22 allowed for a nonzero divergence in the current density which in-turn produced a “correcting” electric field. In both cases, the parallel electric field was obtained from a version of the generalized Ohm’s law.

It was found that both models yielded equivalent results as long as the full generalized Ohm’s law was used when quasineutrality was assumed. Otherwise, the method used in Ref. 21 strongly diverged from both the other hybrid model results and that of the cold plasma MHD illustrating that the pressure term is of significant importance. The model used in Ref. 22, on the other hand, yielded similar results whether or not the pressure term was included.

The reason for the difference is that in the second method, the generalized Ohm’s law can be viewed as a good first guess to what the parallel electric field should be and if the guess is not sufficiently good, the plasma is not as quasineutral as it would like to be and consequently generates a compensating electric field. The end result being that quasineutrality is a consequence of the system rather than being an initial assumption.

Therefore, both methods are useful for the study of standing shear Alfvén waves in magnetospheric plasmas, but it should be clearly understood that in the method used in Ref. 22 disconnecting terms alone in the generalized Ohm’s law does not elucidate the importance of that term to the determination of E_x as it will be compensated for by the closure scheme. The method does have the advantage though of incorporating the full set of cold plasma MHD equations (which could be further generalized) as well as easily allowing for density gradients in either the perpendicular or parallel directions.

In the case of field aligned density profiles, the models were illustrated to produce a static parallel electric field when there was no shear Alfvén wave perturbation. The magnitude of the field increased with plasma temperature. When the perturbation was applied, the parallel electric field more or less oscillated around an average value that was very similar to the static profile.

In addition, a series of runs were done to study Landau damping in the presence of a density gradient. It was illustrated, that the Landau damping was not hindered by the presence of the density gradient except in the case of a narrow central well.

In this paper we have concentrated on the case of a uniform magnetic field but, as mentioned earlier, converging magnetic field and mirror force effects are crucial to a more complete understanding of the electron response in the auroral acceleration region. To address this, investigations are currently under way using a version of the first order model in dipolar coordinates (developed in Ref. 29).

ACKNOWLEDGMENTS

P.A.D. is funded by a PPARC grant. Simulations were conducted using both the SRIF and PPARC funded St. Andrews Maths Cluster and the WESTGRID computing facilities at the University of Alberta funded by the Canadian Foundation for Innovation (CFI) and the Province of Alberta. R.D.S. acknowledges support from the Gradviertenkolleg in Hochtemperatur-Plasmaphysik at the Univ. of Duesseldorf, Germany.

APPENDIX: HYBRID MODEL ENERGY INVARIANT

The standard approach for the derivation of an energy invariant for a system is to put the equations in the conservation form

$$\frac{dW}{dt} + \nabla \cdot \vec{S} = 0, \quad (A1)$$

where W represents the total energy and \vec{S} is the energy flux. For the system of MHD equations and kinetic electrons, this takes the form

$$\frac{d}{dt} \int \left(\frac{1}{2} \rho_u u^2 + \frac{b^2}{2 \mu_o} \right) dV + \frac{d}{dt} \sum_i \frac{1}{2} m_i v_i^2 + \int \left(\vec{E} \times \vec{b} \right) \cdot d\vec{s} = 0. \quad (A2)$$

Since \vec{E} and \vec{b} are periodic in z, the net Poynting flux across the boundaries cancels and so after integrating with respect to time, the invariant becomes

$$\int_V \left(\frac{1}{2} \rho_u u^2 + \frac{b^2}{2 \mu_o} \right) dV + \sum_i \frac{1}{2} m_i v_i^2 = T_E, \quad (A3)$$

where T_E is the total energy and is constant in time. Now, as each of the simulation electrons are “superparticles” representative of a large number of electrons, the term of the electron kinetic energy must be appropriately scaled such that

$$T_E = \int_V \left(\frac{1}{2} \rho_u u^2 + \frac{b^2}{2 \mu_o} \right) dV + \frac{N_1}{N p} \sum_i v_i^2, \quad (A4)$$

where $N_1 = \int n_d dV$ is the total number of real electrons represented in the simulation volume, n is the electron number density, and N_p is the total number of simulation electrons.

Since the model is 2D and $k_z = 0$, a constant y dependence is assumed for each variable and factored out as a length scale so that in nondimensional form the expression represents the energy per unit y,

$$T_{E,2D} = \frac{T_E}{\Delta y} = \int_A dx dz \frac{\rho_u u^2}{2} + \int_A dx dz \frac{b^2}{2} + \frac{1}{2} C_{e2} \sum_i v_i^2, \quad (A5)$$

where $C_{e2} = (m_i/m_p)(\int n_d dxdz/N_p)$ is a constant and the fact that $u_z = b_z = 0$ has been used as well.

For the 1D system, the volume of integration in Eq. (A2) has dimensions Δy in y, L_z in z, and extent Δx (tending to 0) in x. This yields an expression for energy conservation in the form
\[T_{EID} = \frac{T_E}{\Delta x \Delta y} = \int_0^{L_z} \left(\frac{1}{2} \rho_i u_i^2 + \frac{b_i^2}{2 \mu_0} \right) dz + \frac{\int n_i dz}{N_p} \sum_i \frac{1}{2} m_i v_i^2 \]

\[+ \frac{1}{\mu_0} \int_0^{t_i} \int_0^{L_z} \left(E_i (L_z) b_j (L_z) - E_i (0) b_j (0) \right) dz dt \]

\[- \frac{1}{\mu_0} \int_0^{t_i} \int_0^{L_z} \left(\frac{\partial (E_i b_j)}{\partial x} + \mu_0 E_i j_x \right) dz dt, \]

where the last two terms are from the integral of the Poynting flux around a box of width \(\Delta x \) and length \(L_z \) centered on the magnetic field line.

Expanding the derivative in the last term and then using Ampère’s law (\(\partial b_i / \partial x = \mu_0 j_x \)) this becomes

\[T_{EID} = \frac{T_E}{\Delta x \Delta y} = \int_0^{L_z} \left(\frac{1}{2} \rho_i u_i^2 + \frac{b_i^2}{2 \mu_0} \right) dz + \frac{\int n_i dz}{N_p} \sum_i \frac{1}{2} m_i v_i^2 \]

\[+ \frac{1}{\mu_0} \int_0^{t_i} \int_0^{L_z} \left[E_i (L_z) b_j (L_z) - E_i (0) b_j (0) \right] dz dt \]

\[- \frac{1}{\mu_0} \int_0^{t_i} \int_0^{L_z} \left[\frac{\partial E_i}{\partial x} + \mu_0 E_i j_x \right] dz dt, \]

where \(j_x = j_x \) has been used. The magnetic field line can always be considered to be a nodal point so that \(u_i = b_i = 0 \) and so the total energy invariant is just a balance between the perpendicular Poynting flux and the kinetic energy of the electrons. With the scaling discussed previously, this is expressed in nondimensional form as

\[T_{EID} = \frac{T_E}{\Delta x \Delta y} = - \int_0^{t_i} \int_0^{L_z} (E_j j_e) dz dt + \frac{1}{2} C_{el} \sum_i v_i^2, \] \hspace{1cm} (A6)

where \(C_{el} = (m_e / m_p) \int n_e dz / N_p \).